Predicting Splicing from Primary Sequence with Deep Learning
نویسندگان
چکیده
منابع مشابه
Predicting Human Nucleosome Occupancy from Primary Sequence
Nucleosomes are the fundamental repeating unit of chromatin and comprise the structural building blocks of the living eukaryotic genome. Micrococcal nuclease (MNase) has long been used to delineate nucleosomal organization. Microarray-based nucleosome mapping experiments in yeast chromatin have revealed regularly-spaced translational phasing of nucleosomes. These data have been used to train co...
متن کاملPredicting Parameters in Deep Learning
We demonstrate that there is significant redundancy in the parameterization of several deep learning models. Given only a few weight values for each feature it is possible to accurately predict the remaining values. Moreover, we show that not only can the parameter values be predicted, but many of them need not be learned at all. We train several different architectures by learning only a small...
متن کاملWiggle—Predicting Functionally Flexible Regions from Primary Sequence
The Wiggle series are support vector machine-based predictors that identify regions of functional flexibility using only protein sequence information. Functionally flexible regions are defined as regions that can adopt different conformational states and are assumed to be necessary for bioactivity. Many advances have been made in understanding the relationship between protein sequence and struc...
متن کاملPredicting the Triple Beta-Spiral Fold from Primary Sequence Data
The Triple β-Spiral is a novel protein structure that plays a role in viral attachment and pathogenesis. At present, there are two Triple β-Spiral structures with solved crystallographic coordinates – one from Adenovirus and the other from Reovirus. There is evidence that the fold also occurs in Bacteriophage SF6. In this thesis, we present a computational analysis of the Triple β-Spiral fold. ...
متن کاملDeep learning for predicting refractive error from retinal fundus images
Refractive error, one of the leading cause of visual impairment, can be corrected by simple interventions like prescribing eyeglasses. We trained a deep learning algorithm to predict refractive error from the fundus photographs from participants in the UK Biobank cohort, which were 45 degree field of view images and the AREDS clinical trial, which contained 30 degree field of view images. Our m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Cell
سال: 2019
ISSN: 0092-8674
DOI: 10.1016/j.cell.2018.12.015